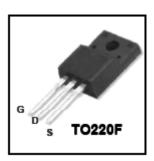

Silicon N-Channel MOSFET


Features

- ■2A,600V, $R_{DS(on)}(Max 5\Omega)@V_{GS}=10V$
- Ultra-low Gate Charge(Typical 9.0nC)
- Fast Switching Capability
- 100%Avalanche Tested
- Isolation Voltage (V_{ISO} = 4000V AC)
- Maximum Junction Temperature Range(150°C)

This Power MOSFET is produced using Winsemi's advanced planar stripe, VDMOS technology. This latest technology has been especially designed to minimize on-state resistance, have a high rugged avalanche characteristics. This devices is specially well suited for high efficiency switch mode power supply.

Absolute Maximum Ratings

Symbol	Parameter	Value	Units
V _{DSS}	Drain Source Voltage	600	V
	Continuous Drain Current(@Tc=25°C)	2.0*	Α
I _D	Continuous Drain Current(@Tc=100°C)	1.5*	Α
I _{DM}	Drain Current Pulsed (Note1)	9.5*	Α
V _{GS}	Gate to Source Voltage	±30	V
Eas	Single Pulsed Avalanche Energy (Note 2)	140	mJ
E _{AR}	Repetitive Avalanche Energy (Note 1)	2.8	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	4.5	V/ns
В	Total Power Dissipation(@Tc=25°C)	23	W
P _D	Derating Factor above 25℃	0.18	W/°C
T _{J,} T _{stg}	Junction and Storage Temperature	-55~150	°C
TL	Channel Temperature	300	°C

^{*}Drain current limited by junction temperature

Thermal Characteristics

Symbol	Parameter		Llaita		
		Min	Тур	Max	Units
Rajc	Thermal Resistance, Junction-to-Case	-	-	5.5	°C/W
R _{QJA}	Thermal Resistance, Junction-to-Ambient	-	1	62.5	°C/W

Electrical Characteristics (Tc = 25°C)

Characte	eristics	Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage curre	ent	I _{GSS}	VGS = ±30 V, VDS = 0 V	-	-	±100	nA
Gate-source breakdown voltage		V _{(BR)GSS}	IG = ±10 μA, VDS = 0 V	±30	-	-	V
Drain cut-off current			VDS = 600 V, VGS = 0 V	-	-	10	μA
		I _{DSS}	VDS = 480 V, Tc = 125°C	-	-	100	μA
Drain-source brea	kdown voltage	V _{(BR)DSS}	ID = 250 μA, VGS = 0 V	600	-	-	V
Gate threshold voltage		V _{GS(th)}	VDS = 10 V, ID =250 μA	2	-	4	V
Drain-source ON resistance		R _{DS(ON)}	VGS = 10 V, ID =0.8A	1	4.3	5	Ω
Forward Transconductance		gfs	VDS = 50 V, ID =0.8A	1	2.0	-	S
Input capacitance		C _{iss}	VDS = 25 V,	-	270	350	
Reverse transfer capacitance		Crss	VGS = 0 V,	-	6	8	pF
Output capacitance		Coss	f = 1 MHz	1	40	50	
	Rise time	tr	VDD =300 V,	1	10	30	
	Turn-on time	ton	ID = 2.0 A	-	25	60	
Switching time	Fall time	tf	RG=25 Ω	-	20	50	ns
	Turn-off time	toff	(Note4,5)	-	25	60	
Total gate charge (gate-source		Qg	VDD = 320 V,	-	9.0	11	
plus gate-drain) Gate-source charge		Qgs	VGS = 10 V,	_	1.6	_	nC
Gate-source charge			ID = 6.5 A			_	-
Gate-drain ("miller") Charge		Qgd	(Note4,5)	-	4.3	-	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Туре	Max	Unit
Continuous drain reverse current	I _{DR}	-	-	-	2.0	Α
Pulse drain reverse current	I _{DRP}	-	-	-	9.5	Α
Forward voltage (diode)	V _{DSF}	IDR = 2 A, VGS = 0 V	-	-	1.4	V
Reverse recovery time	trr	IDR = 2.0A, VGS = 0 V,	-	180	-	ns
Reverse recovery charge	Qrr	dIDR / dt = 100 A / μs	-	0.72	-	μC

Note 1.Repeativity rating :pulse width limited by junction temperature

- 2.L=18.5mH,I_{AS}=2.0A,V_{DD}=50V,R_G=0 Ω ,Starting T_J=25°C 3.I_{SD}≤2.0A,di/dt≤200A/us, V_{DD}<BV_{DSS},STARTING TJ=25°C
- 4.Pulse Test: Pulse Width≤300us,Duty Cycle≤2%
- 5. Essentially independent of operating temperature.

This transistor is an electrostatic sensitive device

Please handle with caution

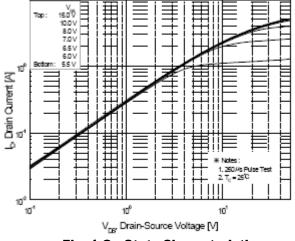
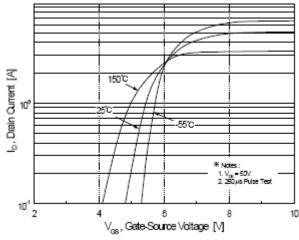



Fig. 1 On-State Characteristics

Fig.2 Transfer Current Characteristics

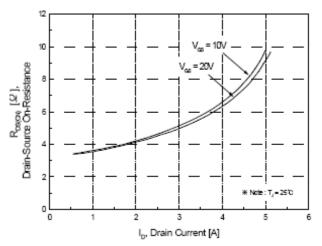


Fig.3 On-Resistance Variation vs Drain Current

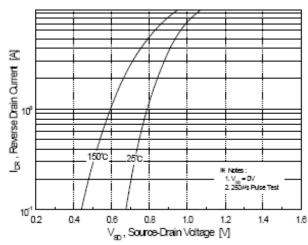


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

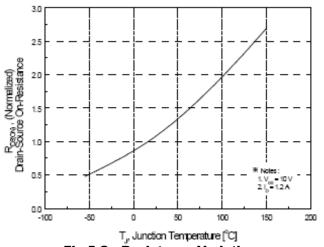


Fig.5 On-Resistance Variation vs Junction Temperature

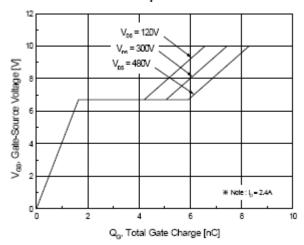
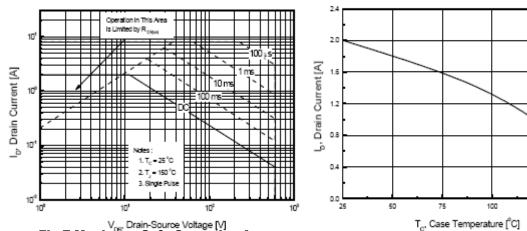



Fig.6 Gate Charge Characteristics

ш

V_{per} Drain-Source Voltage [V]
Fig.7 Maximum Safe Operation Area

Fig.8 Maximum Drain Current vs **Case Temperature**

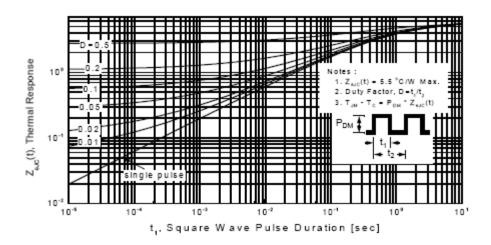


Fig.9 Transient Thermal Response Curve

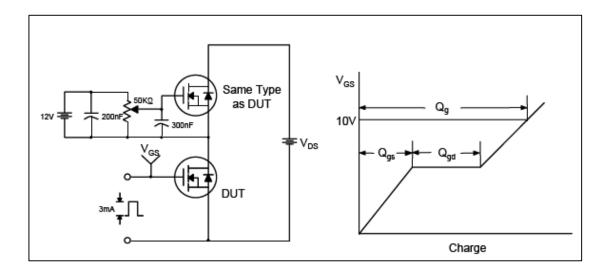


Fig.10 Gate Test Circuit & Waveform

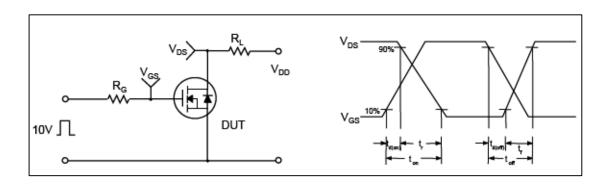


Fig.11 Resistive Switching Test Circuit & Waveform

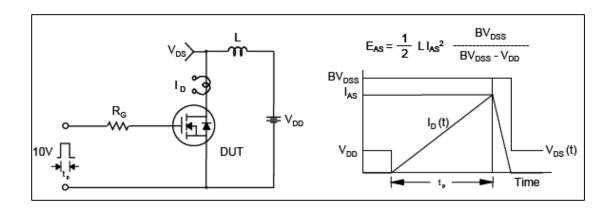


Fig.12 Unclamped Inductive Switching Test Circuit & Waveform

W

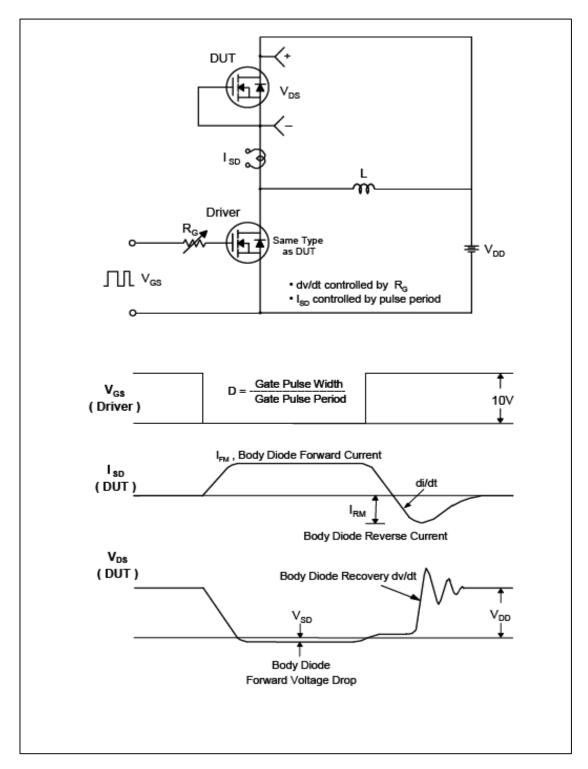
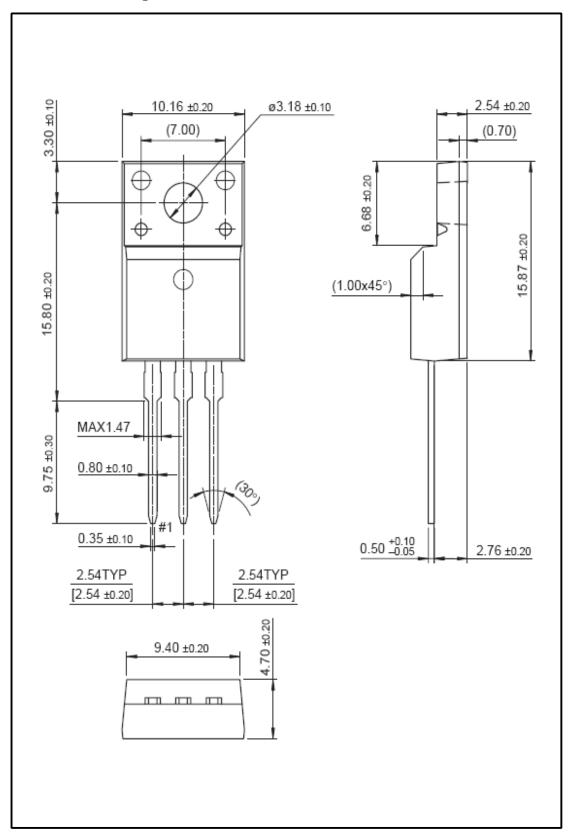



Fig.13 Peak Diode Recovery dv/dt Test Circuit & Waveform

Ш

TO-220F Package Dimension

